MOOCs Platform: A Student Centric approach through algorithm

Abstract

Massive Open Online Courses (MOOCs) have the famous educational system after the COVID epidemic. And, it will be a crucial component of any education system in the coming year. This study examined Edx, Coursera, Udacity, and Course Builder parameters, where two parameters, learner and institutional perspective has been analyzed with its various sub-parameters after a tree algorithm has been executed to achieve the student-centric MOOCs platform. According to the results of the study, the proposed algorithm is providing the estimated values depending on different parameters. It took account of every question relating to each parameter. And it provided a final assessment according to the user preference of the parameters. The author has implemented the decision tree algorithm on the four important student centric core parameters which are .Moreover the author also suggested the best platform with respect to above mentioned student centric parameters through ID3 algorithm.

1. Introduction

E-learning is a useful method for delivering online courses. Nowadays, when technology is developing day by day, and people wants more knowledge to develop his skill. Over here, the elearning platforms help to achieve it without physically attending any academic institutes. One of the most popular is e-learning methods is MOOCs. Massive (enrolment numbers) Open (no mandatory qualifications) Online (fully) Course (structured) is an online web-based learning platform aimed at unlimited participation and open access. The basic philosophy of MOOCs is 3A's i.e., Anytime, Anyone, Anywhere.

The stakeholders are as follows:

Stakeholders	Privileges / Functions
Learner	Register, View Course, View Units, Local Assessments, Final Assessment, View Result
Course Creator	Create Course, Add Units, Add Assessments, View student's Progress & Score
Admin	Post multiple course on site, Authenticate and authorize users as per the roles, Run course on development server

Popular MOOCs Platforms

edx

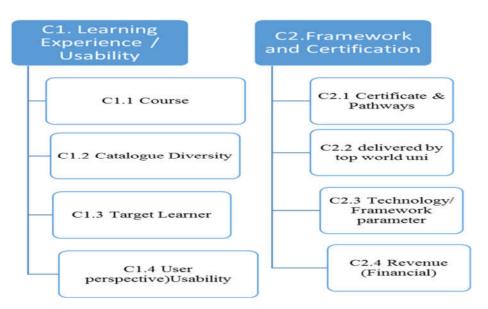
edX is a non-profit organization, and it is open source which provides online courses across different subject domain like management humanities technology and many more. MIT and Harvard University has owned and funded EDX.

Coursera

Coursera is very well famous MOOCs Provider that the main focuses are on more courses, and it is based on profit educational technology. Andrew Ng and Daphene Koller initiated

it in April 2012. It is a proprietary provider on which content provided by participating universities is hosted.

UDACITY


Udacity was developed by Stanford University experiment in which Sebastian Thrun and Peter Norvig both of them had offered their "Introduction to Artificial Intelligence" course online to anyone, for free. More than 160 000 students from more than 190 countries enrolled.

Course Builder (NPTEL (National Program on Technology Enabled Learning))
 NPTEL, a project is funded by the Ministry of Human Resource Development (MHRD), and it is developed in Google Course builder that is an open-source platform. It provides e-learning through online Web and Video courses in different domains like Engineering, Sciences, Technology, Management and Humanities. And it is a National Program on Technology Enhanced Learning.

2. Identification of MOOCs parameters

One of the major important factor for the implementation of MOOCs is its parameters i.e. what are the important parameters are available in MOOCs platform with respect to teacher, learners and institutions. There are two broader category of parameters are identified.

- Learner Prospective: Learning experience with respect to course, content, delivery of course, platform, graphical user interface, etc. treated as core parameters for learners.
- **Institutional prospective:** Like learners, it is also very important to choose platform from institute prospective i.e. platform should be feasible in terms of operational, financial, technical, etc.

The parameter and sub-parameters of each broader category is as follow:

Technology/Framework parameter			
 Course Language support 			
Website Language support			
 Technology /(lowest index of failure) 			
 Responsive Website 			
 Openness of technology 			
 Mobile-app (mobility/ubiquity) 			
• Use of Multimedia			
 Subscription Required 			
verification identity			
Financial/Revenue			
Verified Assessment			
Employment guarantee(Facilitate			
student recruitment)			
Corporate Training			
Tuition Fees			
 Application screening 			
• Course Hosting			
Target Learner/Audience			
Academic, Professional Skill-Worker,			
Postgraduate, Undergraduate School,			
Certificate, Diploma			
, 1			

3. Implementation of MOOCs Platform (Student Centric)

Decision Tree Algorithm has been executed to achieve the student centric MOOCs platform.

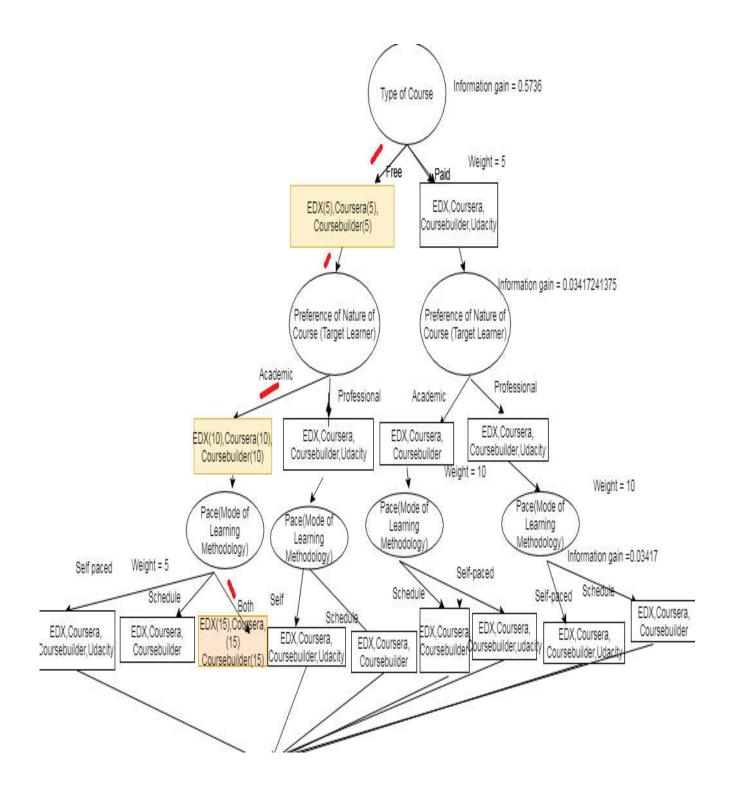
- Proposed Algorithm Implementation
- **Step 1:** classify the collected data and trend dataset of the MOOCs parameters. Establish classification attribute data that Is Table R. (H: High, M: Medium, L: Low, Y-Yes, N-No)

Pace	Target Learner	Multim edia Resourc e	Coarse Langu age suppor t	Pathway	Sear ch Filte rs	N of course (Strength)(Max Class Size)	Usability(U sage)	Assem ent evaluat ion	Platfo rm
Self- paced	Academ ic	Н	M	Xseries	Н	M	M	Н	edX
sched ule	Profesio nal	Н	M	Xseries	Н	M	M	Н	edX
Sched ule	Academ	Н	M	Micro master	Н	M	M	Н	edX
self- paced	Professi onal	Н	M	Micro master	Н	M	M	Н	edX
Sched ule	Academ ic	Н	M	Profession al	Н	M	M	Н	edX
self- paced	Professi onal	Н	M	Profession al	Н	M	M	Н	edX
self- paced	Academ ic	M	Н	Specializa tions	L	Н	Н	M	Cours era
sched ule	Professi onal	M	Н	Specializa tions	L	Н	Н	M	Cours era
Sched ule	Academ ic	M	Н	Specializa tions	L	Н	Н	M	Cours era
self- paced	Professi onal	M	Н	Specializa tions	L	Н	Н	M	Cours era
self- paced	Academ ic	L	M	N	M	L	L	L	Cours e builde r
sched ule	Professi onal	L	M	N	M	L	L	L	Cours e builde r
Sched ule	Academ ic	L	M	N	M	L	L	L	Cours e builde r
self- paced	Professi onal	L	M	N	M	L	L	L	Cours e builde r
self- paced	Professi onal	L	L	Nanodegr ees	M	L	M	M	Udacit
self- paced	Profesio nal	L	L	NaNdegre es	M	L	M	M	Udacit y

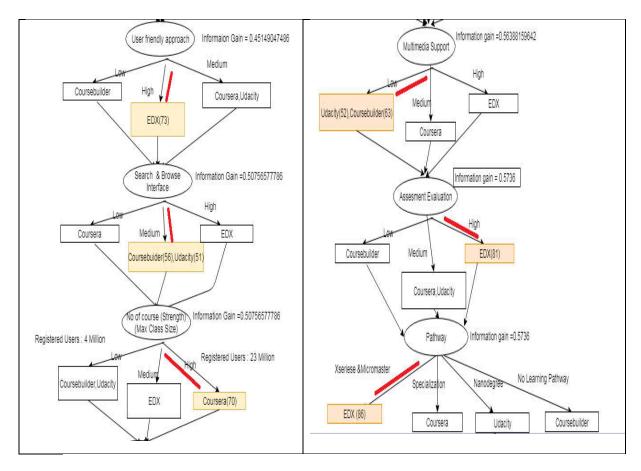
Table R

• Step 2: classification Entropy has been calculated.

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$


Platform is output attribute = P (6/16, 4/16, 4/16, 2/16)HP(r)= $-(6/16\log(6/16) + 4/16\log(4/16) + 4/16\log(4/16) + 2/16\log(2/16) = 0.5736$

• Step 3: Information gain has been calculated For each attribute in R (Trend dataset), H (Target learner) = (7/16) H (Academic), (9/16) H (T Professional) = $7/16(-(3/7 \log(3/7) + 2/7 \log(2/7) + 2/7 \log(2/7)) + 9/16(-(3/\log(3/9) + 2/9\log(2/9) + 2/9\log(2/9))) = 0.53942758625$


$$Gain(T,A) = Entropy(T) - \sum_{v \in Values(A)} \frac{\left| T_v \right|}{\left| T \right|} Entropy(T_v)$$

Information gain = H(T)-H(X, T) gain (course, T) 0.5736-0.5395 = 0.03417241375

Main entropy	0.5736	
Parameters	Entropy	Information gain
Course	0.5736	0
Pace	0.539427586	0.034172414
Target Learner	0.539427586	0.034172414
Multimedia Resource	0.009718404	0.563881596
Mobile App	0.130313959	0.443286041
Self-hosted	0.235042608	0.338557392
Course Language support	0.182678283	0.390921717
Website language support	0.182678283	0.390921717
Tuition Fees	0.247467641	0.326132359
Course categories	0.056443124	0.517156876
Search Filters	0.066034222	0.507565778
No of course (Strength)(Max Class Size)	0.066034222	0.507565778
Usability(Usage)	0.122109525	0.451490475
Assessment evaluation	0	0.5736

- Step 4: Split the set attributes into subsets using in which resulting entropy is minimum or information gain is maximum/minimum.
 - Repeat steps for all attributes.
- Step 5: Quantitative Scale for Ordinal Attributes

Fuzzy Mean Group (Alpha =0.5)	Weight W(T)
High: 5-alpha, 5, 5+alpha	5
Medium: 3-alpha, 3, 3+alpha	3
Low: 1-alpha, 1, 1+alpha	1

Quantitative Scale for Nominal Attributes. W (F) =5 Pt Quantitative Scale for Binary Attributes. W (F) =Yes: 5Pt, No: 0 Pt

• Convert Weight in to Percentage with Formula

F(X) = Weight(X) *100/Total Weight of QuestionsWhere Maximum weight factor for each question W (F) = 5

4. Conclusion

In this research paper we have website responsive, multimedia support is an important aspect. If among this platform if we see the paid course then they have to select Udacity.and free courses is provided by edx,courser, coursebuilder and udacity.Academic courses that is available to

Reference

- Sanz-Martínez, L., Er, E., Dimitriadis, Y., Martínez-Monés, A., & Bote-Lorenzo, M. L. (2018). Supporting teachers in the design and implementation of group formation policies in MOOCs: A case study. *Journal of Universal Computer Science*, 24(8), 1110-1130.
- Kashyap, A., & Nayak, A. (2018). Different Machine Learning Models to Predict Dropouts in MOOCs. 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, 80–85. https://doi.org/10.1109/ICACCI.2018.8554547
- Kumar, A., & Brahmbhatt, S. N. (2018). Massive Open Online Courses (MOOCs), Features and Platforms. In Library and Information Science in the Age of MOOCs (pp. 83–99). IGI Global. https://doi.org/10.4018/978-1-5225-5146-1.ch005
- Kumar, A., Mittal, P., & Brahmbhatt, S. N. (2018). MOOCs Parameters: A Way Forward to Identify Best MOOCs Platform. In Library and Information Science in the Age of MOOCs (pp. 132–145). IGI Global. https://doi.org/10.4018/978-1-5225-5146-1.ch008
- Laveti, R. N., Kuppili, S., Ch, J., Pal, S. N., & Babu, N. S. C. (2017). Implementation of learning analytics framework for MOOCs using state-of-the-art in-memory computing. 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), 1–6. https://doi.org/10.1109/ELELTECH.2017.8074997
- Najafi, H., Rolheiser, C., & Harrison, L. (2017). Variations in pedagogical design of massive open online courses (MOOCs) across disciplines. Teaching and Learning Inquiry, 5(2), 47–64. https://doi.org/10.20343/teachlearningu.5.2.5