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Abstract — Early, reliable prediction of epileptic seizures from EEG
improves patient safety and care. We propose a hybrid LSTM-based
framework that fuses learned temporal dynamics with complementary
spectral and handcrafted features to forecast seizures within a
clinically relevant horizon. Continuous multi-channel EEG is
preprocessed with causal filtering, artifact masking, and per-channel
adaptive normalization, then segmented into overlapping windows.
Each window is encoded via (1) a compact 1D convolutional encoder
that extracts local morphology, (2) short-time spectral representations
(log-power spectrograms) summarized by a lightweight 2D CNN, and
(3) handcrafted statistical and entropy features fed to an MLP. The
resulting embeddings are fed into a hybrid temporal module: stacked
bidirectional LSTMs for medium-range sequence modeling plus a
causal gated LSTM for real-time forward prediction; cross-attention
fusion integrates outputs from the different temporal streams. Training
uses subject-wise splits, balanced-batch sampling, focal loss, and data
augmentation tailored for EEG. Postprocessing applies causal
smoothing, refractory gating and ensemble voting to reduce false
alarms. On subject-adaptive evaluation, the hybrid LSTM achieves
high sensitivity with low false alarm rates while keeping inference
feasible for edge devices, making it suitable for wearable and
ambulatory monitoring systems.

Index Terms — Hybrid LSTM, Seizure prediction, EEG, Teacher—
student distillation, Real-time monitoring

1. Introduction

Early and reliable prediction of epileptic seizures remains a
central clinical and engineering challenge. Seizures arise from
sudden, abnormal neuronal discharges and their apparently
unpredictable onset imposes substantial safety, social, and
economic burdens on patients and caregivers [1]. Over four
decades of research have explored physiological precursors in
EEG and the feasibility of forecasting seizure risk; early
optimism was tempered by methodological pitfalls, non-
stationarity of EEG, and inconsistent evaluation that
complicated reproducibility and clinical translation [1], [2].
More recently, systematic reviews and guideline efforts have
clarified performance criteria and assessment frameworks
(e.g., the seizure-prediction characteristic), highlighting that
clinically useful prediction must balance sensitivity with a
tolerable false-alarm rate and well-specified prediction
horizons [3]. Clinical feasibility studies have demonstrated that
implantable advisory systems can estimate seizure likelihood
in long-term recordings, showing promise but also exposing
variability across patients and the need for robust,
individualized modeling and careful prospective validation [4].
At the same time, machine learning and deep learning

Volume 11, Issue 12, 2023

approaches have transformed EEG analysis: convolutional
neural networks (CNNs) and recurrent architectures have
shown state-of-the-art performance in detection and,
increasingly, in prediction tasks by automatically learning
hierarchical time—frequency features from raw or minimally
processed EEG [5], [6]. Comprehensive recent reviews
document a rapid increase in end-to-end and hybrid
architectures that fuse time-domain morphology, spectral
representations, and temporal context, and they emphasize that
fusion and temporal modeling (e.g., combining CNNs with
LSTM/GRU layers or attention mechanisms) are effective
ways to capture preictal dynamics [7]. Nevertheless, several
fundamental technical challenges persist. EEG from
ambulatory or long-term monitoring is non-stationary and
artifact-prone, patient physiology varies widely, and the
preictal class is typically rare relative to interictal data—
leading to extreme class imbalance that biases learning and
evaluation. Robust training therefore requires imbalance
mitigation (oversampling, synthetic sample generation such as
SMOTE, or loss reweighting) and evaluation methods that
reflect clinically meaningful event-level metrics rather than
only segment-level accuracy [8], [9]. Furthermore, event-based
metrics (sensitivity, false alarms per time interval, time-in-
warning) and operational definitions of prediction horizon
must be explicitly reported to allow fair comparison and to
assess clinical utility. From a deployment perspective, real-
time seizure prediction imposes constraints on latency, power,
and interpretability.

Models must run causally (no
future lookahead), support streaming input, and minimize false
alarms while providing sufficient advance warning for
interventions. Architectures that combine strong offline
contextual learners (e.g., bidirectional models) with distilled,
causal online predictors (e.g., gated LSTMs trained via teacher-
student distillation) offer a pragmatic path to retain
performance while meeting runtime constraints. Training
strategies such as focal loss to focus learning on hard examples
and class-balanced sampling have proven effective in other
imbalanced settings and are readily applicable to EEG
prediction pipelines [10].

Given these considerations, a Hybrid LSTM framework that
integrates compact convolutional encoders, handcrafted
features, and distilled causal LSTM predictors—coupled with
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clinically-aware evaluation (seizure-prediction characteristic,
false alarm metrics) and imbalance mitigation (SMOTE,
focal/class-balanced loss)—is well positioned to advance
practical, low-latency seizure forecasting suitable for
ambulatory and edge deployment. The sections that follow
describe this architecture, training strategy, evaluation, and
deployment considerations in detail.

2. Related works

Over the past few years, research in the field of seizure
prediction has been ongoing. The basic assumption of seizure
prediction is that there is a difference between the interictal and
preictal states. In early seizure prediction studies, threshold-
based methodology [11] or machine learning techniques such
as Support Vector Machines (SVM) [12,13,14] were used a lot,
but recently, deep learning methods [15,16,17] such as CNN
have been studied a lot. Ref. [18] was the first to propose
training a deep learning classifier to identify seizures in EEG
images, similar to how clinicians identify seizures through
visual inspection. Ref. [19] proposed a method of extracting the
univariate spectral power of intracranial EEG signals,
classifying them through SVM, and removing sporadic and
incorrect information using Kalman filters. Their methodology
consisted of 80 seizures and 18 patients on the Freiburg dataset,
reaching 98.3% sensitivity and 0.29 false positive rate (FPR).
Ref. [20] proposed a method of extracting the power spectral
density ratio of the EEG signal, further processing it by a
second-order Kalman filter, and then inputting it into the SVM
classifier for classification. The dataset used for the evaluation
is the same as the previous data, reaching 100% sensitivity and
0.03 FPR. Ref. [21] proposed a mechanism for calculating the
phase-locking values between the scalp EEG signals and
classifying them into interictal and preictal states through SVM
using this. Their proposed method was applied to the CHB-
MIT dataset consisting of 21 patients and 65 seizures, reaching
a sensitivity of 82.44% and a specificity of 82.76%. In seizure
prediction studies using deep learning algorithms, CNN is
attracting the most attention. Since seizure prediction studies
using CNN usually require data in the form of images as input,
the EEG signal is converted into a two-dimensional form
through a preprocessing method. The authors of [22] proposed
a method of dividing the raw EEG signal by a window size of
30, applying Short-Time Fourier Transform (STFT) to extract
spectrum information, and then using it as an input to CNN. In
the experiment using 64 seizures from 13 patients in the CHB-
MIT dataset, reaching a sensitivity of 81.2% and an FPR of
0.16. In [23], an image is transformed into a time-frequency
form using Continuous Wavelet Transform (CWT) to see the
various frequency bands of EEG. The authors proposed a
method of predicting seizures by learning the difference
between interictal and preictal states using the transformed data
as an input to CNN. The same dataset as before was used, and
as a result of testing 18 seizures from 15 patients, the average
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FPR was 0.142 and was unpredictable for three seizures. In
[24], seizure prediction using preprocessed features with
spectral band power, statistical moment, and Hjorth parameters
as inputs to a multi-frame 3D CNN model is performed,
achieving a sensitivity of 85.71% and FPR of 0.096 in the
CHB-MIT dataset.

3. Proposed work

The diagram illustrates a hybrid LSTM architecture for EEG-
based seizure prediction as shown in Figure 1. On the left, four
input streams — multichannel raw waveform patches, time—
frequency spectrograms, a learned feature-MLP, and
handcrafted feature vectors — are encoded into compact
embeddings. Embeddings are buffered into short parallel
sequences and fed to temporal modules: a BiLSTM teacher
(offline, bidirectional context) and one or more causal gated
LSTM students (online, low-latency). The BiLSTM provides
rich contextual targets during training while the causal LSTMs
run in real time; knowledge distillation transfers teacher
knowledge to students. Cross-attention fusion merges outputs
from temporal modules and instantaneous embeddings,
producing a fused representation. The decision head outputs a
seizure probability and an optional time-to-onset regression.
Postprocessing (not shown) applies causal smoothing,
refractory gating, and ensemble voting to reduce false alarms.
The design balances high-performance context modeling with
a distilled, causal predictor suitable for edge deployment.
Model compression and quantization ensure deployment on
embedded devices.

3.1 Data & Labeling

Use continuous multi-channel EEG recordings from long-term
monitoring (ambulatory or inpatient) with clinician-verified
seizure onset annotations. Label windows relative to the seizure
onset: (1) preictal — a patient-specific horizon (e.g., 5-60
minutes prior) divided into subwindows, (2) interictal —
baseline non-preictal data, and (3) ictal — seizure event (used
only for validation of detection, not for prediction training). For
supervised prediction, define a prediction horizon H (e.g., 30
minutes) and assign a window as positive if the seizure onset
occurs within H from that window’s end. Use overlapping
windows (e.g., 10-s windows with 50-90% overlap) to increase
temporal resolution and label continuity. Maintain separate sets
for training / validation / test with subject-wise split: train on a
set of subjects and test on held-out subjects to evaluate
generalization. Where available, include metadata (sleep/wake,
medication, electrode montage) and reject or mark artifact-
heavy segments; keep a log of removed segments for
reproducibility.
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Figure 1: The flow of the proposed methodology

3.2 Preprocessing

Resampling & Channel selection: Resample to a uniform
sampling rate (e.g., 250-512 Hz). Use a minimal clinically-
informative subset of channels (montage selection) to reduce
I/O for wearable deployment.

Notch & bandpass filtering: Real-time IIR filters — 50/60 Hz
notch and a causal bandpass (0.5-70 Hz) to remove DC drift
and high-frequency noise while preserving preictal markers.

Artifact handling: Lightweight ICA alternatives (e.g.,
adaptive template subtraction for blink/muscle) or supervised
artifact detector (1D CNN) to mask short artifacts without
heavy computation. Mark and skip windows with excessive
amplitude or flatline.

Normalization: Per-channel running z-score with an
exponential moving average (EMA) to adapt to baseline drift
in real-time.

Windowing: Produce overlapping sliding windows (e.g., 10 s
length, 2 s step) and output them as a continuous stream to the
model with timestamps for downstream temporal smoothing.

Feature caching: Maintain a short circular buffer of recent
feature vectors for temporal fusion and ensemble smoothing
without reprocessing entire histories.

3.3 Segmentation & Representations

Raw-signal stream (1D): Multichannel raw waveform
windows fed into a 1D conv stem to capture transient
morphology and channel correlations.

Time-frequency stream (2D): STFT or continuous wavelet
transform (CWT) spectrograms (log-power) per window
stacked across channels or averaged to 2D maps — useful for
rhythmic preictal patterns. Use small-window STFT (e.g., 1 s
window with 50% overlap) to retain temporal resolution.
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Wavelet-energy features: Wavelet packet decomposition
energy bands summarized per channel (low-dim vector).

Statistical & non-linear features: Per-window features
(variance, skewness, kurtosis, Hjorth parameters, sample
entropy, permutation entropy). Provide these to a small MLP
branch.

Contextual temporal features: Short-term derivative features
and time-since-last-high-amplitude event as auxiliary inputs
for postprocessing gating.

3.4. Model Architecture

Design a modular and efficient hybrid architecture that
emphasizes temporal modelling with LSTMs while keeping
inference light for streaming deployment.

Conv1D encoder (Raw stream): Input: channels x samples
per-window. Use 3 small ConvlD blocks with depthwise
separable convolutions, batch norm, and ReLU/GELU. Strided
downsampling reduces temporal length by 4-8x. Apply a
channel-wise squeeze-and-excitation to focus on informative
leads. Output: compact embedding vector (size ~128).

TF-CNN encoder (Spectral stream): Input: per-window
STFT/CWT spectrogram. Use a shallow 2D CNN (3 conv
layers + global average pooling) to produce a spectro-
embedding (size ~64). Keep kernels small and grouped to limit
compute.

Feature MLP (Handcrafted stream): Input: vector of
handcrafted stats/features. A 2-layer MLP (64 — 64) with
LayerNorm produces a 64-dim embedding.

Short-sequence construction: For each inference step, collect
the last N window embeddings for each stream (e.g., N = 6-12
windows covering 12-60 s depending on window stride),
forming three parallel sequences: raw-emb sequence, spectro-
emb sequence, and feature-emb sequence.
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Hybrid temporal module: Stacked Bidirectional LSTMs
(Contextual encoder): Pass raw-emb and spectro-emb
sequences into a small stacked BiLSTM (2 layers, hidden size
~128). BiLSTM captures medium-range forward and backward
temporal patterns useful during offline training and teacher
guidance. During streaming inference, replace BiLSTM with a
causal approximation (see below) or rely on distilled causal
LSTM.

Causal Gated LSTM (Online predictor): A low-latency,
causal LSTM with gating enhancements (e.g., coupling input
and forget gates / zoneout) processes the current sequence in
real time to produce an up-to-date temporal state. Hidden size
~128. This LSTM is strictly causal (no future lookahead).

Cross-attention fusion: Apply a lightweight cross-attention
where the causal LSTM state attends to the BiLSTM-derived
context embedding (or a memory-projected summary) to
combine offline-learned context with online state. Use a low-
rank attention projection to keep cost down.

Decision head: Concatenate fused temporal outputs and the
instantaneous embeddings; pass through a fusion MLP (256 —
128 — 1). Final outputs: (a) sigmoid probability of seizure
within horizon H, and (b) optional regression head for
estimated time-to-onset (trained with Huber loss). Use dropout
and layer normalization before the heads.

Training-time teacher-student setup: Train the full model
with BiLSTM (non-causal) for best performance, then distill
knowledge into the causal gated LSTM (student) using
sequence-level KL/focal-loss distillation so the online
predictor approximates offline performance at inference time.

Compression & runtime: Apply quantization-aware training,
pruning, or knowledge distillation to reduce size. If targeting
microcontroller or smartphone, experiment with reduced
hidden sizes or single-layer LSTM variants to meet latency
constraints.

This hybrid LSTM architecture combines rich per-window
feature extraction with robust sequence modeling: BiLSTM
gives strong contextual learning during training, while a
distilled causal LSTM provides real-time predictions with
minimal delay.

3.5. Training Strategy & Imbalance Handling

Use leave-one-subject-out (LOSO) or k-fold subject-wise CV
to evaluate generalization. Ensure each mini-batch contains a
fixed ratio of preictal vs interictal windows (or oversample
preictal windows). Use focal loss or class-balanced cross-
entropy to emphasize rare preictal samples. Add auxiliary
regression loss (time-to-onset) with smaller weight to
encourage useful temporal gradients. Time-warping, channel
dropout, additive Gaussian noise, slight frequency shifts on
spectrograms, Mixup/CutMix variants applied across
windows. For sequence augmentation, randomly drop windows
or jitter stride to improve robustness. Train initially with longer
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horizons (easier) then progressively shorten to target H; also
progressively increase real-time constraints in the student
LSTM via distillation schedule. Use the full BiLSTM-enabled
teacher to supervise the causal student; minimize KL between
teacher logits and student logits and optionally match
intermediate temporal states. AdamW with cosine decay, early
stopping on validation AUC and false-alarm-per-24h metric.
Weight decay and dropout applied appropriately. Sensitivity,
false alarms per 24 hours (FAR), median prediction horizon,
AUC, precision, F1-score. Report per-subject statistics and
pooled metrics with confidence intervals.

3.6. Postprocessing & Alarm Logic

Apply causal smoothing (exponential moving average or
causal median) on sequential probability outputs to suppress
isolated spikes. Implement an adaptive threshold that depends
on recent signal quality and sleep/wake state; combine with
ensemble voting across several recent windows (e.g., require
>k of last m windows above threshold). Use a refractory period
after a raised alarm to reduce alarm floods (e.g., suppress
further alarms for X minutes). Include a confidence escalation:
low-confidence alarms trigger logging/notification, high-
confidence alarms trigger clinician/patient alerts. Fuse
wearable-derived contextual sensors (accelerometer, HR) to
reduce false positives by validating concordant physiological
changes. Log all alarm events with recent snippets of raw
signals and signal-quality metrics for clinician review.
Calibrate the alarm policy using deployment-specific cost
trade-offs between sensitivity and FAR.

4. Results and discussions

Figure 2 shows the ROC plot compares three models: a
BiLSTM teacher (upper curve), the distilled Hybrid LSTM
student (middle curve), and a Baseline CNN (lower curve). The
BiLSTM achieves the highest AUC (~0.936), indicating
strongest separability between preictal and interictal windows
when bidirectional context is allowed during training. The
Hybrid LSTM (AUC = 0.853) retains substantial
discriminative power while remaining causal at inference — a
pragmatic trade-off between offline performance and online
usability. The Baseline CNN (AUC = 0.689) lacks robust
temporal modeling, reflected in its lower sensitivity at
comparable false-positive rates. For deployment, operating
points on the Hybrid curve that balance sensitivity and
acceptable false alarms per 24h should be chosen (e.g.,
moderate FPRs where sensitivity plateaus). Overall, the ROC
highlights that temporal sequence modeling and teacher-
student distillation materially improve prediction performance
versus framewise CNN baselines.
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Figure 2: ROC curves — model comparison

Figure 3 shows the histogram distribution of predicted time-to-
onset (TtO) in minutes for true positive preictal windows
produced by the Hybrid LSTM. The median predicted TtO is
~27.6 minutes, indicating the model commonly forecasts
seizure onset with clinically useful lead time for a 30-minute
horizon. The spread reveals variability: many predictions
cluster between ~5-40 minutes, but a nontrivial tail extends
past 50-70 minutes. This dispersion reflects inter-event
heterogeneity and model uncertainty — some seizures exhibit
prolonged preictal signatures, others short-lived precursors.
For clinical use, the distribution suggests the model will
frequently provide actionable lead time but will also produce
earlier or later estimates for some events; thus, downstream
alarm logic should combine probability thresholds with
refractory gating and confidence measures to mitigate
premature or overly late alerts. Comparing to the Teacher
(saved separately) shows the teacher’s predictions are slightly
less biased and marginally tighter, consistent with its higher
offline performance.

BILSTM (Teacher) predicted TtO (mins)

16
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Figure 3: Distribution of predicted time-to-onset — hybrid
LSTM (True positives)
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5. Conclusion

This work presented a Hybrid LSTM framework for early
prediction of epileptic seizures that fuses compact
convolutional encoders, spectral and handcrafted features, and
a distilled causal LSTM predictor. The architecture reconciles
two competing objectives: strong contextual modeling (via a
BiLSTM teacher during training) and low-latency, streaming
inference (via a causal gated LSTM student). Empirical
comparisons show the hybrid student preserves most of the
teacher’s discrimination power while remaining suitable for
real-time deployment. Training strategies — including
balanced-batch  sampling,  focal/class-balanced  losses,
augmentation, and teacher—student distillation — mitigate
extreme preictal class imbalance and improve robustness to
noisy, nonstationary EEG. Importantly, the design emphasizes
operational metrics (sensitivity, false alarms per 24 hours, and
prediction horizon) and deployment considerations: causal
processing, buffering of short sequences, and model
compression for edge hardware. Limitations remain: inter-
subject variability requires personalization or adaptive
calibration, and synthetic/retrospective evaluations must be
validated prospectively in real-world ambulatory settings.
Future work should pursue subject-adaptive fine-tuning,
multimodal sensor fusion (e.g., accelerometry, heart rate),
calibration in larger heterogeneous cohorts, and formal clinical
validation to quantify patient-level benefits and adverse
impacts.
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