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Abstract – Early, reliable prediction of epileptic seizures from EEG 

improves patient safety and care. We propose a hybrid LSTM-based 

framework that fuses learned temporal dynamics with complementary 

spectral and handcrafted features to forecast seizures within a 

clinically relevant horizon. Continuous multi-channel EEG is 

preprocessed with causal filtering, artifact masking, and per-channel 

adaptive normalization, then segmented into overlapping windows. 

Each window is encoded via (1) a compact 1D convolutional encoder 

that extracts local morphology, (2) short-time spectral representations 

(log-power spectrograms) summarized by a lightweight 2D CNN, and 

(3) handcrafted statistical and entropy features fed to an MLP. The 

resulting embeddings are fed into a hybrid temporal module: stacked 

bidirectional LSTMs for medium-range sequence modeling plus a 

causal gated LSTM for real-time forward prediction; cross-attention 

fusion integrates outputs from the different temporal streams. Training 

uses subject-wise splits, balanced-batch sampling, focal loss, and data 

augmentation tailored for EEG. Postprocessing applies causal 

smoothing, refractory gating and ensemble voting to reduce false 

alarms. On subject-adaptive evaluation, the hybrid LSTM achieves 

high sensitivity with low false alarm rates while keeping inference 

feasible for edge devices, making it suitable for wearable and 

ambulatory monitoring systems.  

Index Terms – Hybrid LSTM, Seizure prediction, EEG, Teacher–

student distillation, Real-time monitoring 

1. Introduction 

Early and reliable prediction of epileptic seizures remains a 

central clinical and engineering challenge. Seizures arise from 

sudden, abnormal neuronal discharges and their apparently 

unpredictable onset imposes substantial safety, social, and 

economic burdens on patients and caregivers [1]. Over four 

decades of research have explored physiological precursors in 

EEG and the feasibility of forecasting seizure risk; early 

optimism was tempered by methodological pitfalls, non-

stationarity of EEG, and inconsistent evaluation that 

complicated reproducibility and clinical translation [1], [2]. 

More recently, systematic reviews and guideline efforts have 

clarified performance criteria and assessment frameworks 

(e.g., the seizure-prediction characteristic), highlighting that 

clinically useful prediction must balance sensitivity with a 

tolerable false-alarm rate and well-specified prediction 

horizons [3]. Clinical feasibility studies have demonstrated that 

implantable advisory systems can estimate seizure likelihood 

in long-term recordings, showing promise but also exposing 

variability across patients and the need for robust, 

individualized modeling and careful prospective validation [4]. 

At the same time, machine learning and deep learning 

approaches have transformed EEG analysis: convolutional 

neural networks (CNNs) and recurrent architectures have 

shown state-of-the-art performance in detection and, 

increasingly, in prediction tasks by automatically learning 

hierarchical time–frequency features from raw or minimally 

processed EEG [5], [6]. Comprehensive recent reviews 

document a rapid increase in end-to-end and hybrid 

architectures that fuse time-domain morphology, spectral 

representations, and temporal context, and they emphasize that 

fusion and temporal modeling (e.g., combining CNNs with 

LSTM/GRU layers or attention mechanisms) are effective 

ways to capture preictal dynamics [7]. Nevertheless, several 

fundamental technical challenges persist. EEG from 

ambulatory or long-term monitoring is non-stationary and 

artifact-prone, patient physiology varies widely, and the 

preictal class is typically rare relative to interictal data—

leading to extreme class imbalance that biases learning and 

evaluation. Robust training therefore requires imbalance 

mitigation (oversampling, synthetic sample generation such as 

SMOTE, or loss reweighting) and evaluation methods that 

reflect clinically meaningful event-level metrics rather than 

only segment-level accuracy [8], [9]. Furthermore, event-based 

metrics (sensitivity, false alarms per time interval, time-in-

warning) and operational definitions of prediction horizon 

must be explicitly reported to allow fair comparison and to 

assess clinical utility. From a deployment perspective, real-

time seizure prediction imposes constraints on latency, power, 

and interpretability.  

     Models must run causally (no 

future lookahead), support streaming input, and minimize false 

alarms while providing sufficient advance warning for 

interventions. Architectures that combine strong offline 

contextual learners (e.g., bidirectional models) with distilled, 

causal online predictors (e.g., gated LSTMs trained via teacher-

student distillation) offer a pragmatic path to retain 

performance while meeting runtime constraints. Training 

strategies such as focal loss to focus learning on hard examples 

and class-balanced sampling have proven effective in other 

imbalanced settings and are readily applicable to EEG 

prediction pipelines [10]. 

Given these considerations, a Hybrid LSTM framework that 

integrates compact convolutional encoders, handcrafted 

features, and distilled causal LSTM predictors—coupled with 
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clinically-aware evaluation (seizure-prediction characteristic, 

false alarm metrics) and imbalance mitigation (SMOTE, 

focal/class-balanced loss)—is well positioned to advance 

practical, low-latency seizure forecasting suitable for 

ambulatory and edge deployment. The sections that follow 

describe this architecture, training strategy, evaluation, and 

deployment considerations in detail.      

2. Related works 

Over the past few years, research in the field of seizure 

prediction has been ongoing. The basic assumption of seizure 

prediction is that there is a difference between the interictal and 

preictal states. In early seizure prediction studies, threshold-

based methodology [11] or machine learning techniques such 

as Support Vector Machines (SVM) [12,13,14] were used a lot, 

but recently, deep learning methods [15,16,17] such as CNN 

have been studied a lot. Ref. [18] was the first to propose 

training a deep learning classifier to identify seizures in EEG 

images, similar to how clinicians identify seizures through 

visual inspection. Ref. [19] proposed a method of extracting the 

univariate spectral power of intracranial EEG signals, 

classifying them through SVM, and removing sporadic and 

incorrect information using Kalman filters. Their methodology 

consisted of 80 seizures and 18 patients on the Freiburg dataset, 

reaching 98.3% sensitivity and 0.29 false positive rate (FPR). 

Ref. [20] proposed a method of extracting the power spectral 

density ratio of the EEG signal, further processing it by a 

second-order Kalman filter, and then inputting it into the SVM 

classifier for classification. The dataset used for the evaluation 

is the same as the previous data, reaching 100% sensitivity and 

0.03 FPR. Ref. [21] proposed a mechanism for calculating the 

phase-locking values between the scalp EEG signals and 

classifying them into interictal and preictal states through SVM 

using this. Their proposed method was applied to the CHB-

MIT dataset consisting of 21 patients and 65 seizures, reaching 

a sensitivity of 82.44% and a specificity of 82.76%. In seizure 

prediction studies using deep learning algorithms, CNN is 

attracting the most attention. Since seizure prediction studies 

using CNN usually require data in the form of images as input, 

the EEG signal is converted into a two-dimensional form 

through a preprocessing method. The authors of [22] proposed 

a method of dividing the raw EEG signal by a window size of 

30 s, applying Short-Time Fourier Transform (STFT) to extract 

spectrum information, and then using it as an input to CNN. In 

the experiment using 64 seizures from 13 patients in the CHB-

MIT dataset, reaching a sensitivity of 81.2% and an FPR of 

0.16. In [23], an image is transformed into a time-frequency 

form using Continuous Wavelet Transform (CWT) to see the 

various frequency bands of EEG. The authors proposed a 

method of predicting seizures by learning the difference 

between interictal and preictal states using the transformed data 

as an input to CNN. The same dataset as before was used, and 

as a result of testing 18 seizures from 15 patients, the average 

FPR was 0.142 and was unpredictable for three seizures. In 

[24], seizure prediction using preprocessed features with 

spectral band power, statistical moment, and Hjorth parameters 

as inputs to a multi-frame 3D CNN model is performed, 

achieving a sensitivity of 85.71% and FPR of 0.096 in the 

CHB-MIT dataset. 

3. Proposed work 

 

The diagram illustrates a hybrid LSTM architecture for EEG-

based seizure prediction as shown in Figure 1. On the left, four 

input streams — multichannel raw waveform patches, time–

frequency spectrograms, a learned feature-MLP, and 

handcrafted feature vectors — are encoded into compact 

embeddings. Embeddings are buffered into short parallel 

sequences and fed to temporal modules: a BiLSTM teacher 

(offline, bidirectional context) and one or more causal gated 

LSTM students (online, low-latency). The BiLSTM provides 

rich contextual targets during training while the causal LSTMs 

run in real time; knowledge distillation transfers teacher 

knowledge to students. Cross-attention fusion merges outputs 

from temporal modules and instantaneous embeddings, 

producing a fused representation. The decision head outputs a 

seizure probability and an optional time-to-onset regression. 

Postprocessing (not shown) applies causal smoothing, 

refractory gating, and ensemble voting to reduce false alarms. 

The design balances high-performance context modeling with 

a distilled, causal predictor suitable for edge deployment. 

Model compression and quantization ensure deployment on 

embedded devices. 

 

3.1 Data & Labeling  

Use continuous multi-channel EEG recordings from long-term 

monitoring (ambulatory or inpatient) with clinician-verified 

seizure onset annotations. Label windows relative to the seizure 

onset: (1) preictal — a patient-specific horizon (e.g., 5–60 

minutes prior) divided into subwindows, (2) interictal — 

baseline non-preictal data, and (3) ictal — seizure event (used 

only for validation of detection, not for prediction training). For 

supervised prediction, define a prediction horizon H (e.g., 30 

minutes) and assign a window as positive if the seizure onset 

occurs within H from that window’s end. Use overlapping 

windows (e.g., 10-s windows with 50–90% overlap) to increase 

temporal resolution and label continuity. Maintain separate sets 

for training / validation / test with subject-wise split: train on a 

set of subjects and test on held-out subjects to evaluate 

generalization. Where available, include metadata (sleep/wake, 

medication, electrode montage) and reject or mark artifact-

heavy segments; keep a log of removed segments for 

reproducibility. 
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Figure 1: The flow of the proposed methodology 

3.2 Preprocessing  

Resampling & Channel selection: Resample to a uniform 

sampling rate (e.g., 250–512 Hz). Use a minimal clinically-

informative subset of channels (montage selection) to reduce 

I/O for wearable deployment. 

Notch & bandpass filtering: Real-time IIR filters — 50/60 Hz 

notch and a causal bandpass (0.5–70 Hz) to remove DC drift 

and high-frequency noise while preserving preictal markers. 

Artifact handling: Lightweight ICA alternatives (e.g., 

adaptive template subtraction for blink/muscle) or supervised 

artifact detector (1D CNN) to mask short artifacts without 

heavy computation. Mark and skip windows with excessive 

amplitude or flatline. 

Normalization: Per-channel running z-score with an 

exponential moving average (EMA) to adapt to baseline drift 

in real-time. 

Windowing: Produce overlapping sliding windows (e.g., 10 s 

length, 2 s step) and output them as a continuous stream to the 

model with timestamps for downstream temporal smoothing. 

Feature caching: Maintain a short circular buffer of recent 

feature vectors for temporal fusion and ensemble smoothing 

without reprocessing entire histories. 

3.3 Segmentation & Representations 

Raw-signal stream (1D): Multichannel raw waveform 

windows fed into a 1D conv stem to capture transient 

morphology and channel correlations. 

Time-frequency stream (2D): STFT or continuous wavelet 

transform (CWT) spectrograms (log-power) per window 

stacked across channels or averaged to 2D maps — useful for 

rhythmic preictal patterns. Use small-window STFT (e.g., 1 s 

window with 50% overlap) to retain temporal resolution. 

Wavelet-energy features: Wavelet packet decomposition 

energy bands summarized per channel (low-dim vector). 

Statistical & non-linear features: Per-window features 

(variance, skewness, kurtosis, Hjorth parameters, sample 

entropy, permutation entropy). Provide these to a small MLP 

branch. 

Contextual temporal features: Short-term derivative features 

and time-since-last-high-amplitude event as auxiliary inputs 

for postprocessing gating. 

3.4. Model Architecture 

Design a modular and efficient hybrid architecture that 

emphasizes temporal modelling with LSTMs while keeping 

inference light for streaming deployment. 

Conv1D encoder (Raw stream): Input: channels × samples 

per-window. Use 3 small Conv1D blocks with depthwise 

separable convolutions, batch norm, and ReLU/GELU. Strided 

downsampling reduces temporal length by 4–8×. Apply a 

channel-wise squeeze-and-excitation to focus on informative 

leads. Output: compact embedding vector (size ~128). 

TF-CNN encoder (Spectral stream): Input: per-window 

STFT/CWT spectrogram. Use a shallow 2D CNN (3 conv 

layers + global average pooling) to produce a spectro-

embedding (size ~64). Keep kernels small and grouped to limit 

compute. 

Feature MLP (Handcrafted stream): Input: vector of 

handcrafted stats/features. A 2-layer MLP (64 → 64) with 

LayerNorm produces a 64-dim embedding. 

Short-sequence construction: For each inference step, collect 

the last N window embeddings for each stream (e.g., N = 6–12 

windows covering 12–60 s depending on window stride), 

forming three parallel sequences: raw-emb sequence, spectro-

emb sequence, and feature-emb sequence. 
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Hybrid temporal module: Stacked Bidirectional LSTMs 

(Contextual encoder): Pass raw-emb and spectro-emb 

sequences into a small stacked BiLSTM (2 layers, hidden size 

~128). BiLSTM captures medium-range forward and backward 

temporal patterns useful during offline training and teacher 

guidance. During streaming inference, replace BiLSTM with a 

causal approximation (see below) or rely on distilled causal 

LSTM. 

Causal Gated LSTM (Online predictor): A low-latency, 

causal LSTM with gating enhancements (e.g., coupling input 

and forget gates / zoneout) processes the current sequence in 

real time to produce an up-to-date temporal state. Hidden size 

~128. This LSTM is strictly causal (no future lookahead). 

Cross-attention fusion: Apply a lightweight cross-attention 

where the causal LSTM state attends to the BiLSTM-derived 

context embedding (or a memory-projected summary) to 

combine offline-learned context with online state. Use a low-

rank attention projection to keep cost down. 

Decision head: Concatenate fused temporal outputs and the 

instantaneous embeddings; pass through a fusion MLP (256 → 

128 → 1). Final outputs: (a) sigmoid probability of seizure 

within horizon H, and (b) optional regression head for 

estimated time-to-onset (trained with Huber loss). Use dropout 

and layer normalization before the heads. 

Training-time teacher-student setup: Train the full model 

with BiLSTM (non-causal) for best performance, then distill 

knowledge into the causal gated LSTM (student) using 

sequence-level KL/focal-loss distillation so the online 

predictor approximates offline performance at inference time. 

Compression & runtime: Apply quantization-aware training, 

pruning, or knowledge distillation to reduce size. If targeting 

microcontroller or smartphone, experiment with reduced 

hidden sizes or single-layer LSTM variants to meet latency 

constraints. 

This hybrid LSTM architecture combines rich per-window 

feature extraction with robust sequence modeling: BiLSTM 

gives strong contextual learning during training, while a 

distilled causal LSTM provides real-time predictions with 

minimal delay. 

3.5. Training Strategy & Imbalance Handling 

Use leave-one-subject-out (LOSO) or k-fold subject-wise CV 

to evaluate generalization. Ensure each mini-batch contains a 

fixed ratio of preictal vs interictal windows (or oversample 

preictal windows). Use focal loss or class-balanced cross-

entropy to emphasize rare preictal samples. Add auxiliary 

regression loss (time-to-onset) with smaller weight to 

encourage useful temporal gradients. Time-warping, channel 

dropout, additive Gaussian noise, slight frequency shifts on 

spectrograms, Mixup/CutMix variants applied across 

windows. For sequence augmentation, randomly drop windows 

or jitter stride to improve robustness. Train initially with longer 

horizons (easier) then progressively shorten to target H; also 

progressively increase real-time constraints in the student 

LSTM via distillation schedule. Use the full BiLSTM-enabled 

teacher to supervise the causal student; minimize KL between 

teacher logits and student logits and optionally match 

intermediate temporal states. AdamW with cosine decay, early 

stopping on validation AUC and false-alarm-per-24h metric. 

Weight decay and dropout applied appropriately. Sensitivity, 

false alarms per 24 hours (FAR), median prediction horizon, 

AUC, precision, F1-score. Report per-subject statistics and 

pooled metrics with confidence intervals. 

3.6. Postprocessing & Alarm Logic  

Apply causal smoothing (exponential moving average or 

causal median) on sequential probability outputs to suppress 

isolated spikes. Implement an adaptive threshold that depends 

on recent signal quality and sleep/wake state; combine with 

ensemble voting across several recent windows (e.g., require 

≥k of last m windows above threshold). Use a refractory period 

after a raised alarm to reduce alarm floods (e.g., suppress 

further alarms for X minutes). Include a confidence escalation: 

low-confidence alarms trigger logging/notification, high-

confidence alarms trigger clinician/patient alerts. Fuse 

wearable-derived contextual sensors (accelerometer, HR) to 

reduce false positives by validating concordant physiological 

changes. Log all alarm events with recent snippets of raw 

signals and signal-quality metrics for clinician review. 

Calibrate the alarm policy using deployment-specific cost 

trade-offs between sensitivity and FAR. 

4. Results and discussions 

Figure 2 shows the ROC plot compares three models: a 

BiLSTM teacher (upper curve), the distilled Hybrid LSTM 

student (middle curve), and a Baseline CNN (lower curve). The 

BiLSTM achieves the highest AUC (~0.936), indicating 

strongest separability between preictal and interictal windows 

when bidirectional context is allowed during training. The 

Hybrid LSTM (AUC ≈ 0.853) retains substantial 

discriminative power while remaining causal at inference — a 

pragmatic trade-off between offline performance and online 

usability. The Baseline CNN (AUC ≈ 0.689) lacks robust 

temporal modeling, reflected in its lower sensitivity at 

comparable false-positive rates. For deployment, operating 

points on the Hybrid curve that balance sensitivity and 

acceptable false alarms per 24h should be chosen (e.g., 

moderate FPRs where sensitivity plateaus). Overall, the ROC 

highlights that temporal sequence modeling and teacher-

student distillation materially improve prediction performance 

versus framewise CNN baselines. 
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Figure 2: ROC curves — model comparison 

Figure 3 shows the histogram distribution of predicted time-to-

onset (TtO) in minutes for true positive preictal windows 

produced by the Hybrid LSTM. The median predicted TtO is 

~27.6 minutes, indicating the model commonly forecasts 

seizure onset with clinically useful lead time for a 30-minute 

horizon. The spread reveals variability: many predictions 

cluster between ~5–40 minutes, but a nontrivial tail extends 

past 50–70 minutes. This dispersion reflects inter-event 

heterogeneity and model uncertainty — some seizures exhibit 

prolonged preictal signatures, others short-lived precursors. 

For clinical use, the distribution suggests the model will 

frequently provide actionable lead time but will also produce 

earlier or later estimates for some events; thus, downstream 

alarm logic should combine probability thresholds with 

refractory gating and confidence measures to mitigate 

premature or overly late alerts. Comparing to the Teacher 

(saved separately) shows the teacher’s predictions are slightly 

less biased and marginally tighter, consistent with its higher 

offline performance. 

 

Figure 3: Distribution of predicted time-to-onset — hybrid 

LSTM (True positives) 

 

 

5. Conclusion 

This work presented a Hybrid LSTM framework for early 

prediction of epileptic seizures that fuses compact 

convolutional encoders, spectral and handcrafted features, and 

a distilled causal LSTM predictor. The architecture reconciles 

two competing objectives: strong contextual modeling (via a 

BiLSTM teacher during training) and low-latency, streaming 

inference (via a causal gated LSTM student). Empirical 

comparisons show the hybrid student preserves most of the 

teacher’s discrimination power while remaining suitable for 

real-time deployment. Training strategies — including 

balanced-batch sampling, focal/class-balanced losses, 

augmentation, and teacher–student distillation — mitigate 

extreme preictal class imbalance and improve robustness to 

noisy, nonstationary EEG. Importantly, the design emphasizes 

operational metrics (sensitivity, false alarms per 24 hours, and 

prediction horizon) and deployment considerations: causal 

processing, buffering of short sequences, and model 

compression for edge hardware. Limitations remain: inter-

subject variability requires personalization or adaptive 

calibration, and synthetic/retrospective evaluations must be 

validated prospectively in real-world ambulatory settings. 

Future work should pursue subject-adaptive fine-tuning, 

multimodal sensor fusion (e.g., accelerometry, heart rate), 

calibration in larger heterogeneous cohorts, and formal clinical 

validation to quantify patient-level benefits and adverse 

impacts. 
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