

Page 1

Research Trends in Privacy Preserving in Association Rule
Mining On Horizontally Partitioned Database

Nisha Gupta

Research Scholar,

Computer Science & Engineering Department, Bhagwant University
Ajmer (Rajasthan), India

gupt.nishu2009@gmail.com

Abstract: In this paper context of confidentiality and safety issues, the problems caused by

association rule mining technique are investigated by many research scholars. It is proved

that the mishandling of this technique may divulge the database owner’s perceptive and

confidential information to others. Association rule mining (ARM) is the vital technique in

the field of data mining used in the distributed database and have received much

consideration from the database district. Association rule mining (ARM) is applicable in the

various fields such as Banking, department stores etc. Main objective of ARM is to extract

interesting correlation, frequent pattern, association or casual structure among set of item in

the operation database or other data repositories.

Keywords- Data Mining, Horizontally Partitioned Database, Privacy Preserving

Association Rule Mining

Introduction: Involvement rule mining, abbreviated as ARM, finds frequent patterns,

involvements and correlations among different items of a data set. The procedure aims to find

the incidence of a specific item based on occurrence of further items in a transaction.

Involvement rule mining plays a significant role in applications like market basket analysis,

cross marketing and catalogue design. ARM is also widely used in statistical analysis and

decision making problems. Involvement rule mining can be performed on centralized data

environments – all the relevant data are collected in one point and involvement rule mining

progression is applied. It can also be done in distributed data environments where data resides

in different sites. All the data set may not be supplied for involvement rule mining process.

Only required information is supplied. Here the data set can be of two types: vertically

partitioned data horizontally partitioned data Consider a situation of insurance company

performing ARM to find the correlations among its customers insurance amount, age, risk

coverage, etc. If involvement tenet mining is performed on multiple databases, located at

different sites, a distributed architecture is needed. Different sites contain at most same set of

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 135

Page 2

attributes with different volumes of transaction. Owners of different sites are ready to share

their data to perform scattered involvement rule mining3. But they want to maintain the

privacy of its customers and sites as this information are private and confidential. Generally it

is believed that the communication channel in distributed involvement rule mining process,

through which parties share their information, is secure. But this is not always correct and

information leakage is encountered in so many situations 4. Hence it becomes necessary to

protect the customer data not only with fellow parties but also with unauthorized third parties.

Hence we propose a cryptography based involvement rule mining algorithm that preserves

privacy and maintains security. The algorithm used in our approach is FP-growth algorithm

along with combination of Elliptic Curvy Cryptography and Digital Signature.

Acquaintance innovation is the nontrivial mining of implicit, in the past unknown, and

potentially useful information from data. Mostly the people who use this concept are business

analyst, medical scientists, researchers, defense analysts, socialists, medical researchers,

economist and so on to make computer based tactical decisions. The innovation of

information can be consider as a process which consists of numerous sub processes termed as

stages and these sequence stages are selection, preprocessing, renovation, data mining, and

interpretation/Evaluation. Among these process/ stages, data mining is the most considerable

process and it finds secreted patterns from large capacious of data. In acquaintance discovery

system data mining plays a major role in decisive useful and uncovers information from

enormous amount of database and it can also be the young and interdisciplinary field of

computer science such as database systems, artificial intelligence, statistics and machine

learning. An overview of steps in acquaintance discovery in database [1] is given in Figure

1.1. Now a days, people find data mining is a necessary tool to find knowledge in decision

making process to predict the future trends and also helps the companies to take right

decisions. Because of this reason the data mining field is getting more attention from many

researchers to find useful patterns efficiently and accurately.

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 136

Page 3

Figure 1.1: An Overview of the Steps in KDD Process.

The second thing to be taken into deliberation is accessibility of source of data may be at one

resource or in many sources since numerous branches may exist for as long as the same

services. If data are at multiple sources data has to be integrated. Once the database is

cleaned, relevant data is extracted by removing relevant data and then data mining technique

is applied to extract useful patterns based on interesting measures. There are many

applications of data mining exist in the real world such as text mining, web mining, spatial

mining, multimedia mining, object mining, sequence mining and so on. The procedure aims

to find the occurrence of a specific item based on occurrences of other items in a transaction.

Association rule mining plays an essential role in applications like market basket analysis,

cross marketing and catalogue design. This feature actually secures the private and sensitive

information which the database owners do not want to reveal.Data mining aims to determine

surreptitious information from bulky database although furtive data is kept safely when data

is allowed to access by single person. It is new technology which has emerged as a means of

identifying patterns and trends from large quantities of data. Generating the learning from the

information inserted in the database is one of the basic needs of information mining

innovation.

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 137

Page 4

 Centralized And Distributed Database

A. Centralized Database: In the central database, all the datasets are together at one

essential site which can be called as Data Warehouse and then all the mining operations are

performed. Fig [a] shows the federal database.

The various techniques used in centralized database are Data Perturbation, Data Blocking and

Reconstruction Based Techniques [7].

B. Distributed Database:

Sometimes, some users do not wish to reveal their information to other users. But the

individual users are interested in achieving the amassed results from the data set which are

divided among the users. Distributed Database is used now a days. Due to large and fast

emergent database, the data are not managed centrally. But they are stored at different places

i.e. different data stored in different places. The Distributed Database can be further classified

into: [8]

a. Vertically Partitioned Database: In this every site has different schemas. The

attribute values may or may not be same. Fig [b] indicates Vertical Partitioned Database

(b) Vertical Partitioned Database

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 138

Page 5

we discuss the implementation of data security issues on outsourced B+ index trees and

ensure security in the execution of basic operations like search and updates (insert, delete) on

the un-trusted server. We are already aware that a table spans on many blocks of data. Basic

operations of search trees include search (to provide solutions for different types of queries)

and updates (modification, insert, delete). In practical scenarios, update operations are

complex to implement, especially in case of dynamic databases, because they heavily degrade

the performance in order to create the structure of the resulting search trees. Search trees are

mostly multilevel indexes which can be used to huddle many varieties of data ranging from

one dimensional to multi-dimensional spatial data sets as given in [1]. Proper index trees are

often built for convenient access to data in the databases. To rescue an indexed data item, a

client necessitates traversing the index tree to find the location of data. In order to bury the

uncertainty and data present min each node of B+ index tree, the traversal path needs

protection mentioned in [2,5].

 In the anticipated technique, clients discover how to privately traverse a remotely stored tree

structure to situate and repossess data. The tree structure and the traversal path are secreted

from the server. Basic functions of search trees include search (to provide solutions for

different types of queries) and (modification, insert, delete)updates. In practical scenario,

update operations are complex to implement, especially in case of dynamic databases,

because they heavily degrade the performance in order to create the structure of the resulting

search trees.

Traversal of Tree Structure:

On outsourcing private data with the help of search trees, Each node is identified by a unique

node identifier (NID).

In this paper, we discuss the challenges to privately retrieve hidden tree ordered data,

particularly how to let a client traverse a tree structure to find the desired data node.

Limitations In Storage Space Usage And Maintenance Of Empty

Node Lists:

In each node swapping operation, the target node is swapped with an empty node In each

node swapping operation, the target node is swapped with an empty node.

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 139

Page 6

Figure 1.2 An Example of B + Trees

 Insert and delete operations on outsourced search trees: Our proposed design

supports to facilitate these basic operations.

 Maintaining the tree structure integrity: It is observed that the solution to the tree

structure integrity maintenance can be applicable to insert and delete operations in dynamic

outsourced databases even when the node is split and deletion of over-full and under-full

nodes occurs.

 Indexed data modification: The object location in the search tree is changed whenever

attributes or values of a data object are modified.

Steps in Search Operation:

This algorithm is the same as that of insert (3.2); the only difference is that we don’t have to

split the node and perform any insert operation.

Algorithm 1: Search Operation

1. Get Name of the table and Data to be inserted from user

2. At server, generate empty node list. Empty nodes are the nodes having no data or any data

that can be identified as null data. Each node of empty node list is called ENODE.

3. Get root address in any random ENODE. The address of this ENODE is known to client

only. This root is the root of B+ tree.

4. At server side begin fetching nodes.

5. Generate redundancy set for nodes.

6. Attach three empty nodes to the redundancy set.

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 140

Page 7

7. Send this array to the client.

8. At client side, decrypt the node and check whether the required node is present in the array

or not. For B+ trees all the operations are performed on leaf. So we have to go to the leaf

node.

9. Continue Steps 5 to 8 till client gets target leaf node.

10. At client side when target node is found, decrypt data perform operations and then re-

encrypt the node. Swap this node with empty node so that the address of target node gets

changed.

11. Complete the operation.

Insert Operation:

To insert a new data object into a search tree, we have to look first for a leaf node that is most

suitable to keep this new object. After a leaf is decided and if it still has at least one free

entry, then the new object will be inserted into that leaf. Otherwise, the leaf is a full node and

needs to be split into two leaf nodes,We have to lock nodes along the traversal path on the

tree in case of outsourced search trees. If the nodes are not locked, later necessary updates are

impossible because the NIDs can be changed by other oblivious operations.

Algorithm : Insert Operation

1. Get Name of the table and Data to be inserted from user.

2. At server, generate empty node list. Empty nodes are the nodes having no

data or any data that can be identified as null data. Each node of an empty node

list is called ENODE.

3. Get root address in any random ENODE. The address of this ENODE is

known to the client only. This root is the root of B+ tree.

4. At server side begin fetching nodes.

5. Generate redundancy set for nodes.

6. Attach three empty nodes to the redundancy set.

7. Send this array to the client.

8. At client side, decrypt the node and ensure whether the required node is

nearby in the array or not. For B+ trees, all the operations are performed on leaf.

So we have to go to the leaf node.

9. If the node is internal node, split the node and copy parent, left and right child

to three empty nodes. Return the node to server. Splitting is performed at client

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 141

Page 8

side so that server is unaware of parent and child node relationship.

10. Continue Steps 5 to 9 till client gets target leaf node.

11. At client side, when target node is found, insert data to the node and then re-

encrypt the node. Swap this node with empty node so that the address of target

node gets changed.

12. Complete the operation.

Delete Operation:

When an object is deleted from a leaf, more issues arise if that leaf becomes under-full. With

this policy, all objects in an under-full leaf are reinserted after this leaf is removed from the

tree.

Algorithm : Delete Operation:

1. Get Name of the table and Data to be inserted from user.

2. At server, generate empty node list. Empty nodes are the nodes having no data or any data

that can be identified as null data. Each node of empty node list is called ENODE.

3. Get root address in any random ENODE. The address of this ENODE is known to client

only. This root is the root of B+ tree.

4. At server side begin fetching nodes.

5. Generate redundancy set for nodes.

6. Attach three empty nodes to the redundancy set.

7. Send this array to the client

8. At client side, decrypt the node and ensure whether the essential node is present in the

array or not. For B+ trees, all the operations are performed on leaf. So we have to go to the

leaf node.

9. Continue Steps 5 to 8 till client gets target leaf node.

10. If the node is having fewer keys than fill factor which is 50% for B+ trees then, go to

parent node and again send this node to client.

11. Client performs necessary adjustments in the tree.

12. Client returns the parent node and then the operation continues.

13. The delete operation ends with client deleting the required key from target node. This

node is then re-encrypted and swapped with empty node in the array.

14. The array is sent back to the server.

15. Complete the operation.

Update Operation:

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 142

Page 9

Update operation can be considered as delete followed by insert operation.

Algorithm : Update Operation

1. Get Name of the table and Data to be inserted from user.

2. At server, generate empty node list. Empty nodes are the nodes having no data or any data

that can be identified as null data. Each node of an empty node list is called ENODE.

3. Get root address in any random ENODE. The address of this ENODE is known to client

only. This root is the root of B+ tree.

4. At server side begin fetching nodes.

5. Generate redundancy set for nodes.

6. Attach three empty nodes to the redundancy set.

7. Send this array to the client.

8. At client side, decrypt the node and check whether the required node is present in the array

or not. For B+ trees all the operations are performed on leaf. So we have to go to the leaf

node.

9. If the node is internal node, split the node and copy parent, left and right child to three

empty nodes. Return the node to server. Splitting is performed at client side so that server is

unaware of parent and child node relationship.

10. Continue Steps 5 to 9 till client gets target leaf node.

11. At client side, when target node is found, insert data to the node and then re-encrypt the

node. Swap this node with empty node so that the address of target node gets changed.

12. If the node is having fewer keys than fill factor which is 50% for B+ trees then, go to

parent node and again send this node to client.

13. Client performs necessary adjustments in the tree.

14. Client returns the parent node and then the operation continues.

15. The Update operation ends with client deleting the required key from target node. This

node is then re-encrypted and swapped with empty node in the array.

16. The array is sent back to the server.

17. Complete the operation

Experimentation and Results:

In the proposed system, a client sends request to application server (Apache Tomcat) through

web browser and accesses it with the help of HTTP request/reply. An application server

connects to client servlets which handle all the request for encryption and decryption of data,

further the request is passed to the database server which connects to remote database that has

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 143

 Page
10

inbuilt business logic which keeps all the information regarding data like in what format it is

to be stored, where it is to be stored, etc. The database server contains servlets that does the

processing of all operations and fetches the required data from database. After processing the

results are sent back to the application server which does the necessary changes according to

the need of client and sends it back to client side through web browser .we have designed the

architecture as shown in Figure 2.1 and implemented all the above algorithms using java

language.

Figure 2.1: Proposed System Design

We have executed the algorithms on different databases with different data types namely -

character, float, integer and a combination of all. We stored all the above types of databases

by using B+ Index Tree approach. We have implemented the encryption techniques

particularly Advanced Encryption System (AES), Data Encryption Standard (DES) and

Blowfish. We have calculated the running time for each operation with respect to different

databases with different data types.

The results we calculated have been presented in the form of graphs as shown in Graph 3.1,

Graph 3.2, and Graph 3.3, Graph 3.4.

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 144

 Page
11

Graph 3.1: result for Blowfish Algorithm

Graph 3.2: Results for DES Algorithm

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 145

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 146

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 147

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 148

AEGAEUM JOURNAL

Volume 8, Issue 6, 2020

ISSN NO: 0776-3808

http://aegaeum.com/ Page No: 149

